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The forces acting on an elastic particle suspended in a shear field, and moving 
relative to it, are found for the case in which there are small deformations from 
an initially spherical shape. The deformation is the result of the viscous stresses 
acting on the particle. Of principal interest is that there is a component of the 
force perpendicular to the free-stream direction, so that the particle will migrate 
across the undisturbed streamlines. 

1. Introduction 
There has been a wide range of experimental and theoretical studies of the 

behaviow of particles suspended in a fluid flowing through a tube. Much of this 
work has been motivated by observations of blood flow which disclosed that the 
red blood cells appeared to congregate near the axis of a blood vessel (see Whit- 
more 1968, for example). The fluid mechanical forces causing this migration, 
and other migration phenomena (Segre' & Silberberg 1962), have received con- 
siderable attention. Brenner (1966) has reviewed the theories and relevant ex- 
periments in this area. A more recent review by Cox & Mason (1971) considers 
additional work in this area as well as rheological effects. 

The migration of solid spherical particles has been found to be due to inertial 
effects, there being no migration at  very small Reynolds number. Theoretical 
analyses of these inertial forces have been given by Rubinow & Keller (1961) 
and Saffman (1965). 

When the particles are deformable, migration does occur at  low Reynolds 
number as has been observed for liquid drops and flexible fibres (see Cox & 
Mason 1971). Chaffey, Brenner & Mason (1965) considered the interaction of 
drop deformation and wall effects to show migration. More recently Haber & 
Hetsroni (1971) found a side force on a liquid drop suspended in a Poiseuille flow 
without considering wall effects. 

The purpose of this work is to show that an elastic particle experiences a side 
force due to deformation and that this force is directed toward the axis of a tube 
under conditions applicable to blood flow. An elastic particle is a significant 
improvement over a liquid drop as a model of blood cells since it requires the 
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no-slip condition at  the particle surface with the particle accommodating itself 
to the surface stresses. This is in marked contrast to liquid drops, in which 
velocity and shear stress are continuous across the interface. The red blood cell 
is thought to consist of a membrane containing a highly concentrated solution 
in which some structure may be present. 

2. Mathematical formulation 
The specific problem being considered here consists of an elastic particle, 

spherical at rest with radius a, which is contained in a simple shear flow with 
~ 

velocity 

relative to the particle. The particle is rotating with an angular velocity I&. 

The caret here denotes unit vectors in the specified direction. 
The motion is assumed to be sufficiently slow that inertial terms can be 

neglected. The equations of motion and continuity for the fluid then are the 
familiar equations of slow viscous flow 

-Vp+pV2U = 0, V.U = 0, (a), (3) 

where p is the pressure, p the viscosity and U the velocity field. The boundary 
conditions on the flow are at infinity (4) 

and u = us ( 5 )  

at the surface of the sphere, where Us is the surface velocity of the elastic material. 
To describe the deformation of the particle, it  is assumed that the elastic dis- 

placements are small so that linear elasticity theory applies. It is also assumed 
that the speed of stress waves is large so that the particle shape is dictated by the 
stress field at  any instant. The material of the sphere is taken as homogeneous 
and isotropic and characterized by the stress-strain relation 

cii = Ae,,6ij + ZGeii, ( 6 )  

where h and G are Lame's constants and the strains eij are given in terms of the 

ax: as; 
~3 axi axi 

displacement field S* by 
e . .  = -+--. 

The displacement is governed by the Navier equation 

(A + G) V(V . S") + GV2S" + F = 0, (8) 

where F is the body force. The boundary conditions on the displacements will 
be given in terms of the stress a t  the particle surface. 

3. Solution 
The solution to this problem involves the simultaneous determination of the 

flow field and the shape of the deformed particle. For small deformations this 
can be accomplished by a perturbation procedure in which the expansion is with 
respect to the ratio of the deformation to the original sphere radius. This pro- 
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cedure is similar to that used by Hyman & Skalak (1970) and Haber & Hetsroni 
(1971) for liquid drops, in which case the magnitude of the deformation is 
proportional to a dimensionless quantity measuring the ratio of the viscous 
force to the surface-tension force. In the present case the magnitude of the 
deformation is proportional to the ratio of the viscous stress to the elastic 
stress. This ratio occurs in more than one form as will be subsequently seen 
and is therefore not readily designated by a single dimensionless group. None the 
less the actual expansion parameter is the deformation for both the liquid drop 
and the present case of a solid elastic sphere. It will be shown below that the 
zero-order solution here is the same as that for a spherical particle in the same 
sense that the zero-order solution for the case of a liquid drop is that appro- 
priate for a spherical liquid drop. A significant feature of the present case, how- 
ever, is that in the absence of deformation a solid elastic particle is indistinguish- 
able from a rigid particle. This of course is not the case for an undeformed 
liquid drop (unless the viscosity of the drop liquid is very large). 

3.1. Perturbation analysis 

In  the absence of deformation the elastic particle under consideration here is 
spherical. It is therefore natural in the case of small deformations to express the 
contour of the particle as 

Here eS is equal to the actual displacement S*. For small deformations we 
require IS\ to be of the same order as a and e to be small. It follows from (9) that 

ro = &,+eS(a, B,q5). (9) 

and finally that ro = a + ES, (11)  
to first order in the deformation. 

the absence of any deformation plus small changes: 
The velocity field sought can be represented as the field which would occur in 

u = U(0) + €U(1) + . . . . (12) 

In  order to evaluate U at the surface ro it is convenient to expand the velocity 
at the particle surface in terms of its values at  the spherical surface r = a :  

(13) 
aU(0) 

ar 
U(ro) = U(O)(,,B,q5)+sU(l)(a,B,q5)+s-(a,B,q5)X,. 

In  this equation only terms to first order in E are retained. 
The surface velocity Us of the particle is approximately that of pure rotation 

but a correction is necessary since a point on the contour is moving tangentially 
to the contour rather than in the direction w x ro. Therefore Us can be written as 

Us = w x ro+ef, (14) 

where the vector f (f = ffi) is determined by the requirement that 

fi.u, = 0. (15) 
12-2 
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Here ii is the unit normal to the surface of the deformed sphere. To the order 
being considered here 

It follows that 

The boundary condition (5) can now be written (to order E )  in the form 

au(0) 
ar U(O)(a, 6, q5) +eU(I)(a, 8,4) + E -  (a, 6,$6) 8, = aw x e,+eX,o x &,+sf. (18) 

The boundary condition at  infinity (equation (4)) is satisfied by requiring 

U(0) +- U,, U(1) -+ 0 at infinity. (19% b )  

3.2. Zero-order solution 

To zero order in 8 the problem reduces to finding the velocity field which satisfies 
( lga ) ,  the zero-order condition at the sphere surface from (18), 

U(O) = aw x 6, at r = a, (20) 

and the equations of motion given by ( 2 )  and (3). This problem can be solved 
using Lamb's (1945, p. 594) general solution and has been given before (Saffman 
1965; Tam 1966). The solution in terms of spherical co-ordinates (r,  8, q5)  is 

{ [ 3u a3] [ 2r 2r3 3 6r2 2r4 
r 5a3 a s ]  

U(0) = 6, U, I--+- cos8+/3 (-3sin19c0~8~0~q5) 

+eO U, -l+-+- 3a a31 sine+@ [; ;r:l ( ~ c o s ~ ~ - ~ ) c o s ~ ~  [ [ 4r 4r3 

Here x is the polar axis and q5 is measured from the x axis. 
The stresses acting on the surface of the sphere owing to the above flow are 

where PE are associated Legendre functions of argument GOS 8. 
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The drag on the sphere due to  this zero-order stress field is easily computed. 

D = 6~paU,% (24) 

(25) 

The result is 

and the torque is T = - 8vpa2(~  + &p) 2. 

This drag and torque must be balanced by body forces acting on the sphere. The 
drag may be considered to be balanced by a constant body force per unit volume 

The torque is balanced by a body force of the form 

where A is determined by 
f, = A2 x ry (27) 

(28) 

A = (15p/a2) (*P+w).  (29) 

1 A(2 x r) x r dV = - 8 n p 2 ( w  + @) 2; 

3.3. DeformationJield 

The first-order displacement field (S*) of the particle can be computed from (8) 
with 

and the surface stresses (23). The particular solution to (8) corresponding to the 
above body force is 

(31) 

x [&Pg cos 34 - &Pi cos 34 - &Pk COS $4 +&-Pi cos $4 - %Pi cos $41 

% 
+ - { ( l p + w )  r 3 [ [ - ~ ~ :  -+pi] sin 9 sin8 2a2G 

A general solution to (8) similar to Lamb's (1945) general solution to the Stokes 
equation is given in appendix A. 

The surface stresses corresponding to the displacements of (31) are 

7m = 5 a [ 2 + ( A / G ) ] p 3 + a [ 2 + ( h / G ) ] ~ p 1  
18PUm 9pUm 6+5h/G 

+ 15pa(&3+w) [ - & P ~ c o s 3 $ 4 + ~ P ~ c o s ~ ] ,  (32a) 

9Pum 15P 
a[2+(h/G)]rn "-&P2-&]+-(&3+W) 2 
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The unknown coefficients A,,, B,, and C,, of the homogeneous solution can 
now be determined by equating the elastic stresses (equations (32) and stress 
formulae derived from (A 1)) to the viscous stresses of (23). Since the functions 
P," cos mq5 are mutually orthogonal the coefficients of each of these functions 
can be set equal t o  zero. I n  this way sets of linear algebraic equations for the 
coefficients are obtained. It will be shown subsequently that only some of the 
coefficients of the displacement field need be found in order to compute the next- 
order forces on the particle. These coefficients are B:o, Bio, Cia, Bil and C;,. 
Explicit expressions for these coefficients are given in appendix B. 

Once the coefficients of the homogeneous solution are determined the equation 
of the contour of the particle is obtained by adding cS,(#,*) to a as in (11). I n  
order for the deformation to be small the coefficients in (31) and appendix B 
must be no larger than e. Thus E is related to the ratio of the viscous forces to 
the elastic forces. I n  the general problem there are three characteristic velocities, 
U,, am and a/?, so that this ratio takes the several forms pU,/G, p@/G and 
pa(w + @)/G. The ratio AlG is needed to complete the specification of the problem. 

3.4. Drug on the deformed particle 

The boundary condition on U(l) for the next-order flow problem is determined 
by equating terms multiplied by E: in (18). This takes the form 

where all terms are evaluated at r = a. Also from (19 h )  

U(l) --f O a t  infinity. (34) 
The solution t o  this problem could now be obtained by again employing Lamb's 

(1945) general solution. However, the objective of this study is to determine the 
transverse component D, of the drift force, and this can be accomplished without 
finding U(1) explicitly by using the relationship (Tam 1969) 

where the integral is over the sphere surface. The advantage here is that the 
surface values of U(1) are already known from (33). The integration indicated in 
(35) is a somewhat tedious procedure involving various integrals of products of 
the spherical harmonics. Furthermore, portions of the above problem have been 
previously considered. Therefore the  relevant results will simply be quoted here. 

Tam (1 966) considered the flow U, past a distorted non-rotating sphere and 
found the velocity field explicitly as well as the total drag. The transverse 
component from his result is 

D, = 127r [E - U, E~~ - , ~ a ~ p ( q c ~ ~  - , (36) 

where the quantities elm are the coefficients in the expansion 

(37) 
0 0 1  

z=o m=o 
1 + 2 C [elm PF,cos mq5 + S,, PI" sin m$] 
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The above expression contains Brenner’s (1964) result for uniform flow past 
a distorted sphere as a special case (see also Happel & Brenner (1965, p. 207), 
which gives general procedures for effecting these solutions). 

The pure rotation of a distorted sphere in an otherwise quiescent fluid was 
also considered by Brenner (1964). Writing that result in the present notation 
yields 

D, = - 67r,ua2ws,,. (38) 

The remaining problem in the boundary condition (33) is to find the forces 
associated with the radial flow f .  The treatment here is similar to the above 
analysis and the result is 

m 

D, = - 47r,ua2we,, - 36npa2w en2. 
n=3,5 

(39) 

Finally, then, the total transverse force is obtained by adding the separate results 
of (36), (38) and (39). In  terms of the present displacement field this result 
reduces to 

where the coefficients are given in appendix B. It is worth noting here that while 
this phase of the problem was considered as a linear superposition of its com- 
ponent parts that is not possible for the problem as a whole. The deformation of 
the sphere is dependent on the uniform flow, shear and rotation. In  the first- 
order p-oblem the combined deformation must be used in the separate solutions 
outlined above. In  this way the different flows become coupled. 

4. Conclusions and discussion 
The principal conclusion of the work is that owing to deformation of an 

initially spherical, solid, elastic particle in a shear flow additional drag forces 
are developed. There is a component of this drag force perpendicular to the free- 
stream direction which would cause a freely suspended particle to drift across 
the streamlines of the undisturbed flow. The direction of drift is in the direction 
of D, (equation (40))  and depends on the relative velocity Um and the sign of the 
shear p and the rotation w. 

In  applying this result to the motion of a deformable particle suspended in 
a Poiseuille flow (the case of interest for biological applications) it is necessary 
to determine the appropriate values of Urn, P and w .  This aspect of the problem 
has been considered previously by Saffman (1965)’ Rubinow & Keller (1961) and 
others. It seems reasonable to use the local shear rate for P and the condition of 
zero net torque to give 

(41) w = -1 
2 P. 

The relakive velocity Urn has usually been taken to be 
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where Ro is the tube radius and U, the centre-line velocity. The above result 
follows from Faxen’s laws (Happel & Brenner 1965, p. 316) and is strictly applic- 
able only to a rigid sphere, whether rotating or not. This is the appropriate 
velocity here, however, since the required U, enters from the zero-order solution, 
in which the particle is undeformed and therefore indistinguishable from a rigid 
sphere. This situation must not be confused with the equivalent expression for 
a liquid drop given by Hetsroni, Haber & Wacholder (1970)) in which case 

2(T 2 

UO, (43) 

where (T is the ratio of the viscosity of the drop to the viscosity of the suspending 
medium. In this case, even though the drop remains spherical the material of 
the drop has a significant effect on the relative velocity. This effect arises since 
in the liquid drop there is internal circulation which results in the equivalent of 
a slip boundary condition at  the interface between the drop and the suspending 
fluid. 

The possibility does exist, however, that the centre-line velocity difference 
given above should not be used but rather some average velocity. This has been 
considered by Reppetti & Leonard (1964) but without adequate theoretical 
justification. In  addition, it should be noted that a wall effect also acts to decrease 
the velocity of a particle relative to that of the fluid. 

From (41) and (42)) the direction of migration predicted by (40) is towards 
the tube axis. This conclusion does not strictly depend on the magnitude of the 
velocity given in (42) but only on the fact that the particle has a lower velocity 
than the undisturbed fluid velocity through its centre. Thus any uncertainty in 
using (42) does not significantly alter the result. 

The direction of the migration obtained here is the same as that predicted by 
Saffman (1965) but for totally different reasons. Saffman’s (1965) result depends 
on inertial effects since a rigid sphere has been shown not to experience a side 
force in slow viscous flow. In  the present work inertial effects are completely 
absent, the side force resulting from the perturbation in the flow field caused in 
turn by elastic deformation. 

Appendix A. Elastic distortion of a sphere 
Part of this appendix is based on chapter 13 of Morse & Feshbach (1953). 
Navier equation 

A general solution of the homogeneous Navier equation (finite at  r = 0) can be 

( A  + G) V(V. S*) + GV2S* = 0. 

written as 

S* = C, ( x x [ r n + l ~ ~ ( c o s  0) ( B : ~  cos m+ + B : ~  sin m+)l 
m n  

n=Om=O 
m m. i 
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nrn+l A(n+3)+G(n+5)  n - m + l  n+m +[-) hn+G(n-2)  ( n+1 e+1- n 

I ’  mrn+l h(n + 3)  + G(n + 5)  
PE(cos 0) ( - Bkm sin m$ + Bim cos m$) +[= hn+G(n-2)  

11 m n mrn-l + c  z [- ~ ( C O S  0)  ( - Ckm sin rk$ + CZm cos m$) 
n=lm=O 

Appendix B 
Writing out explicitly the formulae for the coefficients B:o, Cia, C&,, B,1, and 

- ‘” = 10a2G[2 + (A/G)]’ 
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